Abstract
Mussels have a remarkable ability to bond to solid surfaces under water. From a microscopic perspective, the first step of this process is the adsorption of dopa molecules to the solid surface. In fact, it is the catechol part of the dopa molecule that is interacting with the surface. These molecules are able to make reversible bonds to a wide range of materials, even underwater. Previous experimental and theoretical efforts have produced only a limited understanding of the mechanism and quantitative details of the competitive adsorption of catechol and water on hydrophilic silica surfaces. In this work, we uncover the nature of this competitive absorption by atomic scale modeling of water and catechol adsorbed at the geminal (001) silica surface using density functional theory calculations. We find that catechol molecules displace preadsorbed water molecules and bond directly on the silica surface. Using molecular dynamics simulations, we observe this process in detail. We also calculate the interaction force as a function of distance, and observe a maximum of 0.5 nN of attraction. The catechol has a binding energy of 23 kcal/mol onto the silica surface with adsorbed water molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.