Abstract

With the worldwide trend of controlling the utilization of fossil fuels inducing global climate change, many efforts will have to be made on securing a sustainable energy supply. Tidal current is a concentrated form of gravitational energy, its resource is significant, but limited locations. To effectively capture tidal current energy from the sea, a group of tidal turbines should be formed and positioned with optimal size and spacing for absorbing from multiple points. Thus, the flow field including turbines becomes a huge domain, a so-called tidal farm. It can be very convenient technically and economically if a whole turbine farm is simulated by means of actuator disc thoery. So, the analysis method using actuator discs coupled with a solution of Reynolds Averaged Navier-Stokes (RANS) equations is adopted for actual tidal turbines. Actuator discs have regions where similar forces imposed by actual turbines are applied to a flow. As working in group formation, turbines naturally have interaction effects on one another. Therefore, the present paper investigate the evaluation on the operating performance of tidal farm in terms of the mutual influence among turbine units with various lateral and longitudinal spacing. Authors expect that results of the present study contribute to the development of tidal farm for the future potential energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.