Abstract

This article investigates the basic combustion parameters including start of the ignition timing, burn duration, cycle-to-cycle variation, and carbon monoxide (CO), unburned hydrocarbon (UHC), and nitric oxide (NO x ) emissions of homogeneous charge compression ignition (HCCI) engines fueled with primary reference fuels (PRFs) and their mixtures. Two primary reference fuels, n-heptane and iso-octane, and their blends with RON25, RON50, RON75, and RON90 were evaluated. The experimental results show that, in the first-stage combustion, the start of ignition retards, the maximum heat release rate decreases, and the pressure rising and the temperature rising during the first-stage combustion decrease with the increase of the research octane number (RON). Furthermore, the cumulative heat release in the first-stage combustion is strongly dependent on the concentration of n-heptane in the mixture. The start of ignition of the second-stage combustion is linear with the start of ignition of the first-stage. The combustion duration of the second-stage combustion decreases with the increase of the equivalence ration and the decrease of the octane number. The cycle-to-cycle variation improved with the decrease of the octane number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.