Abstract
The adsorption mechanism of octanohydroxamic acid (OHA) on monazite was studied using kinetic, isotherm, and thermodynamic adsorption tests as well as FTIR, titration, and micro-flotation experiments. The adsorption mechanism was described as a chemisorption/surface precipitation process. At low OHA concentrations, adsorption occurred by chemisorption as a result of the reaction between surface active sites and OHA molecules. With an increase in concentration and interaction time, surface precipitation occurred. For chemisorption, adsorption was an exothermic and entropy driven process and maximum adsorption was achieved at pH9.0 due to more active sites. In an acidic environment, such as pH3.0, adsorption was achieved via chemisorption and hydrophobic bonding. However, a strong basic and higher temperature environment contributes to surface precipitation of basic rare earth hydroxamate. FTIR tests showed the movement of CH2 band position from 2924cm−1 to 2920cm−1 with increases in pH values from 3.0 to 6.0, 9.0, and 11.0, which corresponds to the status of chemisorbed and surface precipitated OHA, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.