Abstract

A fundamental link between system theory and statistical mechanics has been found to be established by the Kolmogorov entropy K. By this quantity the temporal evolution of dynamical systems can be classified into regular, chaotic, and stochastic processes. Since K represents a measure for the internal information creation rate of dynamical systems, it provides an approach to irreversibility. The formal relationship to statistical mechanics is derived by means of an operator formalism originally introduced by Prigogine. For a Liouville operator L and an information operator\(\tilde M\) acting on a distribution in phase space, it is shown that i[L,\(\tilde M\)]≡KI (I=identity operator). As a first consequence of this equivalence, a relation is obtained between the chaotic correlation time of a system and Prigogine's concept of a “finite duration of presence.” Finally, the existence of chaos in quantum systems is discussed with respect to the existence of a quantum mechanical time operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.