Abstract

In this study, we investigate the effect of drop weight shape, bed mass and drop height on the impact breakage of a run-of-mine platinum group metals (PGM) ore collected from the Great Dyke region in Zimbabwe. The three drop weight shapes used were spherical balls, semi-ellipsoids and cubes. We then applied a model-free optimization tool called the Attainable Region (AR) technique to analyze and optimize the impact energy on a bed of PGM particles. We observed that different drop weight shapes produce products of different levels of fineness, hence an interesting area for research. A higher mass fraction of a preselected desired product fineness (−850 + 150 μm) was obtained from use of spherical balls and semi-ellipsoids compared to cubes. We also observed that the bed mass had a significant effect on the impact breakage process and an optimal bed mass gave result to a maximum amount of the desired size class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.