Abstract
In this work a novel mathematical framework, that fully describes fusion and vapourisation state transitions in multi-component substrates, has been applied to assist in understanding the fundamental mechanisms of thermo-capillary (keyhole) formation and stability during the electron beam welding process. Specifically the role of electron beam divergence, and the location of the beam focal-point within the substrate, is numerically investigated. It is shown that the location of the beam focal point directly influences the keyhole formation dynamics and leads to drastically different keyhole structures. It is further shown that a less divergent electron beam has a greater penetration rate and produces a more stable thermo-capillary. Finally the chemical heterogeneity induced due to preferential element evaporation during the process is explored and significant Manganese loss is predicted from the simulated SA508 steel substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.