Abstract

Biodegradable and bioabsorbable poly(lactic acid)s are one of the most important biomedical materials. However, it is difficult to introduce the functional groups into poly(lactic acid)s in order to improve their hydrophilicity and degradation rate. Here the authors describe the synthesis of functionalized cyclic lactide monomer 3,6-bis(benzyloxymethyl)-1,4-dioxane-2,5-dione (BnLA) using an advanced synthetic route. Water-soluble hydroxyl-functionalized homopoly(lactic acid) (P(OH)LA) is synthesized via ring-opening polymerization (ROP) of BnLA, followed by a hydrogenolytic deprotection reaction. Amphiphilic diblock poly(lactic acid) (P(OH)LA-PLA) is synthesized via ROP of DL-lactide using PBnLA as an initiator, followed by a hydrogenolytic deprotection reaction. P(OH)LA-PLA is able to form polymeric micelles with the diameter of sub-100 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call