Abstract

This paper describes a functionality-based instruction-level power analysis model, which aims at reducing workload of computing inter-instruction power and keeping the convenience to observe necessary parameters from a source-code description. The model treats the total power as the sum of basic power of individual functional component and switching power of consecutive components pairs. To get the switching power, the switching activities between two functional components are treated as one changing from working state to sleeping state and the other from sleeping state to working state. NOP instructions are used to model transitions between the two states. The model is experimentally validated on a wide range of embedded software routines. Experiments show that our model is within 95% accuracy on the average, and can reduce the workload from a complexity of O(n2), which is the workload of traditional instruction-level energy estimation techniques, to a complexity of O(n).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.