Abstract

Lithium sulfur battery is highly appealing for energy storage because of its high theoretical capacity and energy density. Nevertheless, as one of the pivotal problems, the shuttling of soluble polysulfide intermediates hinders its practical application. In this work, we employ an electronic conductive carbon material and a lithium ion conductive block polymer (lithium sulfonated poly(styrene-ethylene-butylene-styrene), Li+-SSEBS) to fabricate a functional separator by a simple coating method. The functional coating on the PP separator exhibits excellent electronic conductivity for reactivating the active materials, good lithium ion conductivity for facilitating lithium ion transport, and great ionic selectivity for the suppressing polysulfide shuttle. With this separator, the battery shows a high initial discharge capacity of 1066 mAh g–1 and excellent capacity retention of 762.7 mAh g–1 after 350 cycles at 0.5 C. It also exhibits excellent rate performance with a high capacity of 750 mAh g–1 at 2 C and ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call