Abstract

In the work, a rapid and accurate biosensor for mercury ions (Hg2+) was constructed, with which aggregation of dual-modified (DGPFHR- and CALNN-) gold nanoparticles (D/C-AuNPs) could be triggered by the high specificity of peptides to Hg2+. The given peptide DGPFHR possesses great capability of capturing Hg2+, accompanied by the conformational folding. Under the circumstances, D/C-AuNPs were employed as the detection probes to accomplish the quantitative analysis of Hg2+. This is primarily because the specific Hg2+-induced folding of peptides reduces the electrostatic repulsion and steric hindrance, thus accelerating the AuNPs aggregation. The principle and application potential of this proposal was proved by evidence. And the results demonstrated that Hg2+ ions could be selectively detected as low as 28 nM with a linear range of 100–800 nM. In consideration of superior simplicity, selectivity, accuracy and stability, the protocol was advantageous over other projects in practical measurement of various water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.