Abstract
We used functional magnetic resonance imaging (fMRI) to examine brain activity of higher fit and lower fit children during early and late task blocks of a cognitive control flanker paradigm. For congruent trials, all children showed increased recruitment of frontal and parietal regions during the early block when the task was unfamiliar, followed by a decrease in activity in the later block. No within-group changes in congruent accuracy were reported across task blocks, despite a decline in performance across all participants, likely due to fatigue. During incongruent trials, only higher fit children maintained accuracy across blocks, coupled with increased prefrontal and parietal recruitment in the early task block and reduced activity in the later block. Lower fit children showed a decline in incongruent accuracy across blocks, and no changes in activation. We suggest that higher fit children are better at activating and adapting neural processes involved in cognitive control to meet and maintain task goals.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.