Abstract

The rodent family Heteromyidae contains bipedal hoppers and quadrupedal runners. The possibility that bipedalism is associated with forelimb specialization for nonlocomotory functions, such as burrowing and seed-gathering, motivated a static functional-morphometric and interspecific allometric analysis of 18 metric characters of the forelimb skeleton. A principal-components analysis, across 28 species in six genera, showed that lengths of proximal (scapula, humerus) and distal (ulna, radius, metacarpal) elements were negatively allometric, and widths were positively allometric. Quadrupedal and bipedal species groups showed qualitatively similar allometric patterns, except that scapula width anterior to the spine was positively allometric in quadrupeds and negatively allometric in bipeds; scapula width posterior to the spine was positively allometric in bipeds and isometric in quadrupeds; and olecranon length was isometric in bipeds and positively allometric in quadrupeds. Most morphometric characters varied significantly among species within genera, even when effects of size variation were reduced by reconstructing all species to a common general size (as indicated by their score on the first principal component). These shape differences caused species to vary in the mechanical advantage of the forelimb, of possible importance for digging and seed-harvesting performance. Relative to quadrupeds, bipedal species tended to have greater mechanical advantage for proximal forelimb elements and smaller mechanical advantage for distal forelimb elements, but only the distal pattern remained in reconstructed forms, and no functional character was significantly different when tested over variation among genera nested within locomotion type. Cluster analysis confirmed that forelimb characters related to digging or seed-harvest are not coincident with mode of locomotion. Forelimb characters were, however, associated with digging or seed-harvest performance. Mechanical advantage of the proximal forelimb was positively related to an index of the compaction of soils with which 26 desert-dwelling species are associated, and also to relative use of heavy vs. light soils by nine species in the laboratory. Across 10 species, deviations in seed-harvest rate from expected allometric values were negatively correlated with mechanical advantage of the distal forelimb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call