Abstract
Plasmid rolling circle replication generates single-stranded DNA intermediates. The intracellular amount of these molecules depends upon the efficiency of the conversion of single-stranded into double-stranded plasmid forms, that is, the functionality of the lagging strand origin (sso). The broad-host-range streptococcal plasmid pMV158 harbors two different ssos, both of which function efficiently in Streptococcus pneumoniae but poorly in Escherichia coli. Plasmid pMV158 is stably inherited in the pneumococcal host, but it is unstable in E. coli. A pMV158 derivative lacking its two ssos is unstable in both strains. We have cloned into this derivative the coliphage f1 lagging strand origin. Whereas the f1 sso was fully functional in E. coli, it did not show any activity in S. pneumoniae, a bacteria closely related to the pMV158 natural host. The presence of the f1 sso did not stabilize pMV158 inheritance in either the gram-positive or the gram-negative host.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.