Abstract

In Gram negative Escherichia coli there are two well-characterised primosomal assembly processes, the PriA- and DnaA-mediated cascades. The presence of PriA and DnaA proteins in Gram positive Bacillus spp. supports the assumption that both the PriA- and DnaA-mediated primosomal assembly cascades also operate in these organisms. However, the lack of sequence homology between the rest of the primosomal proteins indicates significant differences between these two bacterial species. Central to the process of primosomal assembly is the loading of the main hexameric replicative helicase (DnaB in E.coli and DnaC in Bacillus subtilis) on the DNA. This loading is achieved by specialised proteins known as 'helicase loaders'. In E.coli DnaT and DnaC are responsible for loading DnaB onto the DNA during primosome assembly, in the PriA- and DnaA-mediated cascades, respectively. In Bacillus the identity of the helicase loader is still not established unequivocally. In this paper we provide evidence for a functional interaction between the primosomal protein DnaI from B.subtilis and the main hexameric replicative helicase DnaB from Bacillus stearothermophilus. Our results are consistent with the putative role of DnaI as the 'helicase loader' in the Gram positive Bacillus spp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call