Abstract

Adenylyl and guanylyl cyclases synthesize second messenger molecules by intramolecular esterification of purine nucleotides, i.e., cAMP from ATP and cGMP from GTP, respectively. Despite their sequence homology, both families of mammalian cyclases show remarkably different regulatory patterns. In an attempt to define the functional domains in adenylyl cyclase responsible for their isotypic-common activation by Galphas or forskolin, dimeric chimeras were constructed from soluble guanylyl cyclase alpha1 subunit and the C-terminal halves of adenylyl cyclases type I, II, or V. The cyclase-hybrid generated cAMP and was inhibited by P-site ligands. The data establish structural equivalence and the ability of functional complement at the catalytic sites in both cyclases. Detailed enzymatic characterization of the chimeric cyclase revealed a crucial role of the N-terminal adenylyl cyclase half for stimulatory actions, and a major importance of the C-terminal part for nucleotide specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call