Abstract
We prove a functional central limit theorem for Markov additive arrival processes where the modulating Markov process has the transition rate matrix scaled up by $$n^{\alpha }$$nź ($$\alpha >0$$ź>0) and the mean and variance of the arrival process are scaled up by n. It is applied to an infinite-server queue and a fork---join network with a non-exchangeable synchronization constraint, where in both systems both the arrival and service processes are modulated by a Markov process. We prove functional central limit theorems for the queue length processes in these systems joint with the arrival and departure processes, and characterize the transient and stationary distributions of the limit processes. We also observe that the limit processes possess a stochastic decomposition property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.