Abstract
This paper introduces a functional central limit theorem for empirical processes endowed with real values from a strictly stationary random field that satisfies an interlaced mixing condition. We proceed by using a common technique from Billingsley (Convergence of probability measures, Wiley, New York, 1999), by first obtaining the limit theorem for the case where the random variables of the strictly stationary ρ′-mixing random field are uniformly distributed on the interval [0, 1]. We then generalize the result to the case where the absolutely continuous marginal distribution function is not longer uniform. In this case we show that the empirical process endowed with values from the ρ′-mixing stationary random field, due to the strong mixing condition, doesn’t converge in distribution to a Brownian bridge, but to a continuous Gaussian process with mean zero and the covariance given by the limit of the covariance of the empirical process. The argument for the general case holds similarly by the application of a standard variant of a result of Billingsley (1999) for the space D(−∞, ∞).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.