Abstract

PurposeThe aim of the study was to assess the usefulness of intraoperative neuromonitoring (IONM) in identifying anatomical variants of the recurrent laryngeal nerve (RLN) during thyroidectomies, with emphasis on the nerve’s relationship to the inferior thyroid artery (ITA), Zuckerkandl’s tubercle, nonrecurrent laryngeal nerves (NRLNs), and extralaryngeal bifurcation.MethodsA total of 128 subjects undergoing surgery for thyroid disorders were enrolled in the study, and the course and anatomical variants of RLN were assessed with IONM application.ResultsThe standard relationship between RLN and ITA was that the artery and nerve intersect (100%). The right RLN was below the ITA in 76.67% of the patients, and the left RNL was below it in 75.81%. There were no statistically significant differences in the relationship between RLN and ITA on the two sides; and gender did not significantly influence the relationship between the RLN and ITA on either side. In one patient a nonrecurrent inferior laryngeal nerve was present on the right side (0.83%). RLN bifurcation was observed in 33.33% of the patients on the right and in 19.35% on the left side; the difference between sides was statistically significant (p < 0.05). Posterior tubercle (Zuckerkandl’s tubercle) was observed on the right in 83% of the subjects and on the left in 69%. The age, thyroid volume and body mass index (BMI) did not influence the size of the tumor.ConclusionsThe utilization of IONM of the RLN in thyroid surgery adds a new dimension to the standard of visual nerve identification allowing for functional nerve testing at the most vulnerable area of the dissection: at the level of Berry’s ligament, posterior tubercle (Zuckerkandl’s tubercle) and crossing of the RLN with the inferior thyroid artery.

Highlights

  • Recurrent laryngeal nerve (RLN) palsy is one of the most serious complications after thyroid surgery

  • In 1938 Lahey was first to show that routine visual RLN identification during thyroid operations reduces the rate of RLN injury, and nowadays there is no doubt that it is the gold standard in thyroidectomy [9]

  • Nowadays there is no doubt that knowledge of anatomy and surgical skills in identification of the RLN is basic to modern thyroid surgery [2, 5, 7]

Read more

Summary

Introduction

Recurrent laryngeal nerve (RLN) palsy is one of the most serious complications after thyroid surgery. In 1938 Lahey was first to show that routine visual RLN identification during thyroid operations reduces the rate of RLN injury, and nowadays there is no doubt that it is the gold standard in thyroidectomy [9]. The introduction of IONM has broadened surgeons’ knowledge about the anatomy of the RLN and its variants. These include the variable course of the RLN at the level of the inferior thyroid artery (ITA), the relationship between the RLN and posterior tubercle (Zuckerkandl’s tubercle), nonrecurrent laryngeal nerves (NRLN), and extralaryngeal bifurcation [13]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call