Abstract

This paper proposes a function-oriented form-grinding approach to obtain excellent and stable contact performance of cylindrical gears by designing modification forms based on a predesigned controllable fourth-order transmission error (TE) function and error sensitivity evaluation. First of all, a predesigned fourth-order TE polynomial function is assigned to the gear drive. Mathematical models of modified tooth surfaces that can describe their local deviation and ease-off topography are then obtained with the predesigned fourth-order TE function. The corresponding error sensitivity analysis is applied for investigation that reflects inherent relationships between contact attributes of modified tooth surfaces and misalignments. Moreover, the form-grinding wheel’s profile equation, the coordinate transformation matrix during form-grinding, and settings of computer numerical control (CNC) form-grinding programs for this active design method can be determined. This approach is ultimately conducted on three involute cylindrical gear pairs to demonstrate its feasibility and effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call