Abstract

Let $(A,\mathfrak{m})$ be a Gorenstein local ring of dimension $d \geq 1$. Let $\operatorname{\underline{CM}}(A)$ be the stable category of maximal Cohen-Macauley $A$-modules and let $\operatorname{\underline{ICM}}(A)$ denote the set of isomorphism classes in $\operatorname{\underline{CM}}(A)$. We define a function $\xi \colon \operatorname{\underline{ICM}}(A) \to \mathbb{Z}$ which behaves well with respect to exact triangles in $\operatorname{\underline{CM}}(A)$. We then apply this to (Gorenstein) liaison theory. We prove that if $\dim A \geq 2$ and $A$ is not regular then the even liaison classes of $\{\,\mathfrak{m}^n \mid n\geq 1 \,\}$ is an infinite set. We also prove that if $A$ is Henselian with finite representation type with $A/\mathfrak{m}$ uncountable then for each $m \geq 1$ the set $\mathcal {C}_m = \{\, I \mid I \text { is a codim $2$ CM-ideal with } e_0(A/I) \leq m \,\}$ is contained in finitely many even liaison classes $L_1,\dots ,L_r$ (here $r$ may depend on $m$).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.