Abstract

We present a novel approach for approximating the primal and dual parameter-dependent solution functions of parametric optimization problems. We start with an equation reformulation of the first-order necessary optimality conditions. Then, we replace the primal and dual solutions with some approximating functions and find for some test parameters optimal coefficients as solution of a single nonlinear least-squares problem. Under mild assumptions it can be shown that stationary points are global minima and that the function approximations interpolate the solution functions at all test parameters. Further, we have a cheap function evaluation criterion to estimate the approximation error. Finally, we present some preliminary numerical results showing the viability of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.