Abstract

We present a three-dimensional (3D) technique for computing light scattering and propagation in complex structures formed by scatterers embedded in a stratified background. This approach relies on the Green's tensor associated with the background and requires only the discretization of the scatterers, the entire stratified background being accounted for in the Green's tensor. Further, the boundary conditions at the edges of the computation window and at the different material interfaces in the stratified background are automatically fulfilled. Different examples illustrate the application of the technique to the modeling of photonic integrated circuits: waveguides with protrusions (single element ‘grating’) and notches. Subtle effects, like polarization crosstalks in an integrated optics device are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.