Abstract

Fully relativistic four-component self-consistent field and correlated calculations at the Mo/ller–Plesset second-order perturbation theory level (MP2) have been performed for the monofluorides and mono- and trihydrides of lanthanum, lutetium, actinium, and lawrencium. The calculated spectroscopic constants are in good agreement with available experimental data. The calculated bond lengths have been compared with values from nonrelativistic calculations to give an estimate of the effect of relativity on the molecular lanthanide and actinide contraction. The calculated lanthanide contraction at the relativistic MP2 level is 0.12, 0.12, and 0.19 Å for the monohydrides, monofluorides, and trihydrides, respectively. The corresponding results for the actinides are 0.20, 0.15, and 0.28 Å, and we demonstrate that the larger size of the actinide contraction is a consequence of relativistic effects. Between 10% and 30% of the lanthanide contraction and between 40% and 50% of the actinide contraction is caused by relativity in these compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.