Abstract
Neural network potentials for kaolinite minerals have been fitted to data extracted from density functional theory calculations that were performed using the revPBE + D3 and revPBE + vdW functionals. These potentials have then been used to calculate the static and dynamic properties of the mineral. We show that revPBE + vdW is better at reproducing the static properties. However, revPBE + D3 does a better job of reproducing the experimental IR spectrum. We also consider what happens to these properties when a fully quantum treatment of the nuclei is employed. We find that nuclear quantum effects (NQEs) do not make a substantial difference to the static properties. However, when NQEs are included, the dynamic properties of the material change substantially.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.