Abstract
With the example of the spherically symmetric scalar wave equation on Minkowski space-time we demonstrate that a fully pseudospectral scheme (i.e. spectral with respect to both spatial and time directions) can be applied for solving hyperbolic equations. The calculations are carried out within the framework of conformally compactified space-times. In our formulation, the equation becomes singular at null infinity and yields regular boundary conditions there. In this manner, it becomes possible to avoid "artificial" conditions at some numerical outer boundary at a finite distance. We obtain highly accurate numerical solutions possessing exponential spectral convergence, a feature known from solving elliptic PDEs with spectral methods. Our investigations are meant as a first step towards the goal of treating time evolution problems in General Relativity with spectral methods in space and time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.