Abstract

In this paper, a printed audio amplifier, which is a new application for organic electronics, is suggested. The amplifier consists of several fully-printed bendable components including: a loudspeaker, organic field effect transistors (OFETs), capacitors, and resistors. All components are fabricated on polyethylene terephthalate (PET) substrate by means of high-throughput printing techniques. A complete self-biased circuit is reported consisting of large multi-finger OFETs with channel length of 20 $\mu\text{m}$ and total width of 0.475 meter. The amplifier provides a peak voltage gain of 18 dB at 400 Hz, can reproduce sound pressure level of 36–60 dBA over 700 Hz to 12.5 kHz at one meter distance, and has a unity-gain-bandwidth of 17.7 kHz/5.2 kHz when driving 0 nF/ $\sim$ 39 nF load at $\text{V}_{\mathrm{DD}}=80 \text{V}$ , respectively. The impact of bias-stress effects on the amplifier performance is measured to be $\sim$ 3 dBA sound loss after 5 hours of continuous operation. The whole circuit is packaged and laminated on a separate PET sheet. In addition, the intrinsic electrical impedance of the printed PVDF-TrFE piezoelectric polymer used in the loudspeaker is characterized, and is modeled by a complex dielectric constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.