Abstract

For real-time image-processing applications, a highly parallel system that exploits parallelism is desirable. A content addressable memory (CAM), or an associative processor, that can perform various types of parallel processing with words as the basic unit is a promising component for creating such a system because of its suitability for LSI implementation. Conventional CAM LSI's, however, have neither efficient function nor enough capacity for pixel-parallel processing. This paper describes a fully parallel 1-Mb CAM LSI. It has advanced functions for processing various pixel-parallel algorithms, such as mathematical morphology and discrete-time cellular neural networks. Moreover, since it has 16-K words, or processing elements (PEs), which can process 128/spl times/128 pixels in parallel, a board-sized pixel-parallel image-processing system can be implemented using several chips. A chip capable of operating at 56 MHz and 2.5 V was fabricated using 0.25-/spl mu/m full-custom CMOS technology with five aluminum layers. A total of 15.5 million transistors have been integrated into a 16.1/spl times/17.0 mm chip. Typical power dissipation is 0.25 W. Processing performance of various update and data transfer operations is 3-640 GOPS. This CAM LSI will make a significant contribution to the development of compact, high-performance image-processing systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.