Abstract
We propose a general nonparametric Bayesian framework for binary regression, which is built from modeling for the joint response–covariate distribution. The observed binary responses are assumed to arise from underlying continuous random variables through discretization, and we model the joint distribution of these latent responses and the covariates using a Dirichlet process mixture of multivariate normals. We show that the kernel of the induced mixture model for the observed data is identifiable upon a restriction on the latent variables. To allow for appropriate dependence structure while facilitating identifiability, we use a square-root-free Cholesky decomposition of the covariance matrix in the normal mixture kernel. In addition to allowing for the necessary restriction, this modeling strategy provides substantial simplifications in implementation of Markov chain Monte Carlo posterior simulation. We present two data examples taken from areas for which the methodology is especially well suited. In particular, the first example involves estimation of relationships between environmental variables, and the second develops inference for natural selection surfaces in evolutionary biology. Finally, we discuss extensions to regression settings with ordinal responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.