Abstract

AbstractAn axisymmetrical shell element for large deformations is developed by using Ogden's non‐linear elastic material law. This constitutive equation, however, demands the neglect of transverse shear deformations in order to yield a consistent theory. Therefore, the theory can be applied to thin shells only. Eventually a ‘quasi‐Kirchhoff‐type theory’ emerges. Within this approach the computation of the deformed director vector d is a main assumption which is essential to describe the fully non‐linear bending behaviour. Furthermore, special attention is paid to the linearization procedure in order to obtain quadratic convergence behaviour within Newton's method. Finally, the finite element formulation for a conical two‐node element is given. Several examples show the applicability and performance of the proposed formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.