Abstract

The digital low dropout regulator (D-LDO) has drawn significant attention recently for its low-voltage operation and process scalability. However, the tradeoff between current efficiency and transient response speed has limited its applications. In this brief, a coarse–fine-tuning technique with burst-mode operation is proposed to the D-LDO. Once the voltage undershoot/overshoot is detected, the coarse tuning quickly finds out the coarse control word in which the load current should be located, with large power MOS strength and high sampling frequency for a fixed time. Then, the fine-tuning, with reduced power MOS strength and sampling frequency, regulates the D-LDO to the desired output voltage and takes over the steady-state operation for high accuracy and current efficiency. The proposed D-LDO is verified in a 65-nm CMOS process with a 0.01-mm2 active area. The measured voltage undershoot and overshoot are 55 and 47 mV, respectively, with load steps of 2 to 100 mA with a 20-ns edge time. The quiescent current is 82 $\mu\textrm{A}$ , with a 0.43-ps figure of merit achieved. Moreover, the reference tracking speed is 1.5 $\textrm{V}/\mu\textrm{s}$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.