Abstract
Digital isolators are implemented to protect low-voltage electronics and ensure human safety during high-voltage surge events. In this work, we present the design of an inductive-based digital isolation system that can sustain up to 1 kVrms breakdown voltage. The proposed system is designed using the pulse polarity modulation scheme and fabricated in a 0.35 μm CMOS. Two identical dies are bounded within the IC package, with one die housing the transmitter (Tx) and the isolation transformer, while the other die contains the receiver (Rx). Two different customized designs between three metal layers are implemented to form the isolation element. The transformer’s secondary coil is constructed in metal-1, while the primary coil is formed in metal-2 and metal-3 for comparing the system functionality, isolation capability, and propagation delay. The functionality has been verified by measurements for an operating frequency of 300 MHz with a 2.6 ns propagation delay and an energy consumption of 8.15 × 103 pJ/bit at 1 Mbps. The chip was tested under extreme temperatures and achieved a maximum measured common mode transient immunity (CMTI) of 500 V/μs. Jitter has been examined to ensure fast transmission at a bit error rate (BER) of 10−15 with a total jitter (TJ) of 188.18 ps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.