Abstract

Resolving the shoreline undulation due to tidal excursion is a crucial part of modelling water flow in estuaries and coastal areas. Nevertheless, maintaining positive water column depth and numerical stability has proved out to be a very difficult task that requires special attention. In this paper we propose a novel wetting–drying method in which the position of the sea bed is allowed to fluctuate in drying areas. The method is implemented in a Discontinuous Galerkin Finite Element Model (DG-FEM). Unlike most methods in the literature our method is compatible with fully implicit time-marching schemes, thus reducing the overall computational cost significantly. Moreover, global and local mass conservation is guaranteed which is crucial for long-term environmental applications. In addition consistency with tracer equation is also ensured. The performance of the proposed method is demonstrated with a set of test cases as well as a real-world application to the Scheldt Estuary. Due to the implicit time integration, the computational cost in the Scheldt application is reduced by two orders of magnitude. Although a DG-FEM implementation is presented here, the wetting–drying method is applicable to a wide variety of shallow water models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.