Abstract

Rho of Plants (ROPs) are GTPases that regulate polarity and patterned wall deposition in plants. As these small, globular proteins have many interactors, it has been difficult to ensure that methods to visualize ROP in live cells do not affect ROP function. Here, motivated by work in fission yeast (Schizosaccharomyces pombe), we generated a fluorescent moss (Physcomitrium [Physcomitrella] patens) ROP4 fusion protein by inserting mNeonGreen after Gly-134. Plants harboring tagged ROP4 and no other ROP genes were phenotypically normal. Plants lacking all four ROP genes comprised an unpatterned clump of spherical cells that were unable to form gametophores, demonstrating that ROP is essentially for spatial patterning at the cellular and tissue levels. The functional ROP fusion protein formed a steep gradient at the apical plasma membranes of growing tip cells. ROP also predicted the site of branch formation in the apical cell at the onset of mitosis, which occurs one to two cell cycles before a branch cell emerges. While fluorescence recovery after photobleaching studies demonstrated that ROP dynamics do not depend on the cytoskeleton, acute depolymerization of the cytoskeleton removed ROP from the membrane only in recently divided cells, pointing to a feedback mechanism between the cell cycle, cytoskeleton, and ROP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.