Abstract

Related to safety issues, charge balancing is a major concern in neural and functional electrical stimulation. This paper presents a capacitive-based charge metering method as a low-power and precise charge balancing method used in Deep Brain Stimulation (DBS). In contrast to the previously presented capacitive-based charge metering methods, the proposed method does not need any precise and high-speed comparator for net-zero charge detection. It is proven that this method is insensitive to the delay and the offset of its components. Consequently, using ultra-low power components in the charge balancer is feasible. Furthermore, the proposed method properly supports any stimulation mode and waveform. The proposed approach along with voltage and current mode pulse generators was validated in a 0.9% saline solution by using a DBS lead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.