Abstract

Simulating complex astrophysical reacting flows is computationally expensive—reactions are stiff and typically require implicit integration methods. The reaction update is often the most expensive part of a simulation, which motivates the exploration of more economical methods. In this research note, we investigate how the explicit Runge–Kutta–Chebyshev (RKC) method performs compared to an implicit method when applied to astrophysical reactive flows. These integrators are applied to simulations of X-ray bursts arising from unstable thermonuclear burning of accreted fuel on the surface of neutron stars. We show that the RKC method performs with similar accuracy to our traditional implicit integrator, but is more computationally efficient when run on CPUs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call