Abstract

Optimizing autonomous vehicle movements through roadway intersections is a challenging problem. It has been demonstrated in the literature that traditional traffic control, such as traffic signal and stop sign control are not optimal especially for heavy traffic demand levels. Alternatively, centralized autonomous vehicle control strategies are costly and not scalable given that the ability of a central controller to track and schedule the movement of hundreds of vehicles in real-time is questionable. Consequently, in this paper a fully distributed algorithm is proposed where vehicles in the vicinity of an intersection continuously cooperate with each other to develop a schedule that allows them to safely proceed through the intersection while incurring minimum delay. Unlike other distributed approaches described in the literature, the wireless communication constraints are considered in the design of the control algorithm. Specifically, the proposed algorithm requires vehicles heading to an intersection to communicate only with neighboring vehicles, while the lead vehicles on each approach lane share information to develop a complete intersection utilization schedule. The scheduling rotates between vehicles to identify higher traffic volumes and favor vehicles coming from heavier lanes to minimize the overall intersection delay. The simulated experiments show significant reductions in the average delay using the proposed approach compared to other methods reported in the literature and reduction in the maximum delay experienced by a vehicle especially in cases of heavy traffic demand levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.