Abstract
<abstract><p>In this paper, an effective numerical method for solving the variable-order(VO) fractional reaction diffusion equation with the Caputo fractional derivative is constructed and analyzed. Based on the generalized alternating numerical flux, we get a fully discrete local discontinuous Galerkin scheme for the problem. From a practical standpoint, the generalized alternating numerical flux, which is distinct from the purely alternating numerical flux, has a more extensive scope. For $ 0 &lt; \alpha(t) &lt; 1 $, we prove that the method is unconditionally stable and the errors attain $ (k+1) $-th order of accuracy for piecewise $ P^k $ polynomials. Finally, some numerical experiments are performed to show the effectiveness and verify the accuracy of the method.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.