Abstract

The separation of memory and arithmetic logic unit (ALU) in the von Neumann computing architecture hinders the development of big data and high-performance computing. In-memory computing (IMC) as a new computation method significantly reduces the latency and power consumption of data processing. In this study, we propose a fully digital static random access memory (SRAM)-based IMC architecture, which has the following advantages: 1) it simplifies multiplication to multicycle addition operations, reuses logic cells, and reduces hardware overhead; 2) by adding a pair of nMOS transistors to achieve internal write-back, the computational efficiency is improved, and at the same time, the final result of the multiplication can be stored locally, eliminating the need to read the computational result immediately; and 3) this scheme can be easily expanded to multiplication operations with different bit widths, which provides good scalability. A 4-kb SRAM-IMC macro chip is manufactured using the SMIC 55-nm technology to realize 4-bit multiplication, with an energy efficiency of 51.4 TOPS/W (0.9 V) and a throughput of 234.3 GOPS/mm <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{2}$</tex-math> </inline-formula> . The proposed multiplication–accumulation architecture is applied to a neural network, which achieves 98.7% accuracy with the Mixed National Institute of Standards and Technology database (MNIST) dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.