Abstract
SummaryIn this paper, we analyze the numerical approximation of two‐phase magnetohydrodynamic flows. Firstly, an equivalent new system is designed by introducing two scalar auxiliary variables. One of variables is used to linearize the phase field function and the other is used to deal with the highly coupled and nonlinear terms. Secondly, by combining with a novel decoupling technique based on the “zero‐energy‐contribution” feature and the pressure correction method, the linearized second order BDF numerical scheme, which has the advantage of fully decoupled structure, is constructed. Furthermore, we strictly prove the unconditional energy stability and error analysis of the scheme, and give a detailed implementation procedure that only requires to calculate several linear elliptic equations with constant coefficients. Finally, the results of numerical simulations are presented to validate the rates of convergence and energy stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.