Abstract

When high Reynolds turbulent flows are combined with complex and large size geometries, computers are no longer enough powerful to deal with Direct Numerical Simulation (DNS) and with the resolution of all the scales of turbulence motion. Therefore, the RANS approaches solve averaged equations and use a model to simulate these scales. This model contains dissipation processes that should not be polluted by the numerical diffusion needed to stabilized approximations for convection-dominated flows. In this paper, we proposed a strongly coupled numerical formulation for the Spalart–Allmaras model, in the framework of stabilized finite element methods. Computations are performed for compressible Newtonian fluids (2D and 3D) on unstructured grids of high aspect ratio. Results are compared with experimental data and also with solutions obtained by different numerical strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.