Abstract
PurposeThis paper aims to present a 3D static performance analysis model for the gas foil journal bearing to provide better understanding of the gas foil journal bearing and extend the development of the calculation about the static performance.Design/methodology/approachThe foil bearing can be seen as a shell structure, and the mixed interpolation of tensorial components (MITC) element was used to build the shell model. The augmented Lagrange method was used to calculate the contact involving friction between foils and between the foil and the bearing sleeve. A displacement-controlled load scheme was used to calculate the deformation of the foils. A mapping operator was used to map the film pressure from the gas to the surface of the top foil.FindingsThis method provides high precision of calculation in the prediction of the static performance. The calculation results were compared with the experimental data, and they show good agreement. Meanwhile, the model can be applied in the prediction of the bearing performance in a broad range of working conditions.Originality/valueThis method extends the calculation of the gas foil journal bearing to a 3D scale and shows good agreement with the experimental data. Meanwhile, the present model has a good adaptability on the revolution speed and can be applied to the predictions in varied working conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.