Abstract

Communications over the unlicensed spectrum are susceptible to be delayed by mandatory channel access mechanisms. Based on the need for improving the latency-reliability performance of New Radio-Unlicensed for supporting new usecases, such as industrial applications, different types of channel access are evaluated in this paper. By using asynchronous and demand-driven channel access, it is shown that approximately 50% of the delay experienced by a downlink packet is due to listen before talk (LBT). Furthermore, UEs might be blocked by an unsuccessful uplink LBT losing the opportunity to transmit their previously scheduled data. As an alternative, synchronous channel access is evaluated. By using a coordinated LBT among the nodes, the channel access delay is reduced to a constant value. However, UEs can still be blocked when initiating their uplink transmissions due to neighbours transmissions. Motivated by this fact, an approach in which a central node is in charge of the frame selection is proposed. Therefore, all the nodes in the system are coordinated in both the channel access and the frame configuration. In this case, a latency reduction of 70% as compared to the previously mentioned alternatives is achieved at high loads and 99.9999% reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call