Abstract

Specialized imputation routines for multilevel data are widely available in software packages, but these methods are generally not equipped to handle a wide range of complexities that are typical of behavioral science data. In particular, existing imputation schemes differ in their ability to handle random slopes, categorical variables, differential relations at Level-1 and Level-2, and incomplete Level-2 variables. Given the limitations of existing imputation tools, the purpose of this manuscript is to describe a flexible imputation approach that can accommodate a diverse set of 2-level analysis problems that includes any of the aforementioned features. The procedure employs a fully conditional specification (also known as chained equations) approach with a latent variable formulation for handling incomplete categorical variables. Computer simulations suggest that the proposed procedure works quite well, with trivial biases in most cases. We provide a software program that implements the imputation strategy, and we use an artificial data set to illustrate its use. (PsycINFO Database Record

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.