Abstract

Recently, there has been increased interest in the development of autonomous flying vehicles. However, as most of the proposed approaches are suitable for outdoor operation, only a few techniques have been designed for indoor environments, where the systems cannot rely on the Global Positioning System (GPS) and, therefore, have to use their exteroceptive sensors for navigation. In this paper, we present a general navigation system that enables a small-sized quadrotor system to autonomously operate in indoor environments. To achieve this, we systematically extend and adapt techniques that have been successfully applied on ground robots. We describe all algorithms and present a broad set of experiments, which illustrate that they enable a quadrotor robot to reliably and autonomously navigate in indoor environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.