Abstract

A fully-automated computer-aided detection (CAD) system is being proposed in this paper for identification and classification of subsolid lung nodules present in Computed Tomography(CT) scans. The system consists of two stages. The first stage aims at detecting locations of the nodules, while the second one classifies the same into the solid and subsolid category. The system performs segmentation of the region of interest (ROI) and extraction of relevant features from the segmented ROI. Graylevel covariance matrix (GLCM) is being used to extract the Feature vectors. Principle component analysis (PCA) algorithm is used to select significant features in the feature space formed by the vectors. The nodule localization is performed using support vector machine, fuzzy C-means, and random forest classification algorithms. The identified nodules are further grouped into solid and subsolid nodules by extracting histogram of gradient (HoG) features adopting K-means and support vector machine (SVM) classifiers. A large number of annotated images from the widely available benchmark database is tested to validate the results. Efficiency and reliability of the system are evaluated visually and numerically using the relevant quantitative measures. The developed CAD system is found to identify subsolid nodules with a high percentage of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.