Abstract
A new red-fluorescent mercury ion sensor material is designed and synthesized, which is composed of a tweezer-shaped hydrophilic probe containing bifurcated soft-base atoms N and S coupled with 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) unit. By virtue of the strong electron-accepting nature of TCF unit (as a push–pull chromophore), this designed sensor material can selectively detect Hg2+ over various tested metal ions in a 100% aqueous medium via naked-eye and photoluminescence (PL) observations. Theoretical and time-resolved photoluminescence measurements further confirmed the selectivity and reversibility of the probe towards Hg2+ via intramolocular charge transfer mechanism in this sensor material. Moreover, the living cell tests by confocal fluorescence images of this sensor material towards Hg2+ were also investigated. Finally, distinguished absorption changes and fluorescence quenching spectral appearances allowed us to present the selective optical indicator of Hg2+ via TCF moiety for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.