Abstract
This work presents a computational methodology for the simulation of three-dimensional, two-phase flows, based on adaptive strategies for space discretization, as well as a varying time-step approach. The method is based on the Front-Tracking method and the discretization of the Eulerian domain employs a Structured Adaptive Mesh Refinement strategy along with an implicit–explicit pressure correction scheme. Modelling of the Lagrangian interface was carried out with the GNU Triangulated Surface (GTS) library, which greatly reduced the difficulties of interface handling in 3D. The methodology was applied to a series of rising bubble simulations and validated employing experimental results and compared to literature numerics. Finally, the algorithm was applied to the simulation of two cases of bubbles rising in the wobbling regime. The use of adaptive mesh refinement strategies led to physically insightful results, which otherwise would not be possible in a serial code with a uniform mesh.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.