Abstract

Covalent organic frameworks (COFs) have become a promising candidate for the remediation of heavy metal pollution. However, researches on COF adsorbents still have challenges on maintaining good optical properties and adsorption performance under harsh conditions. Herein, a fully π-conjugated COF with dual binding sites (Bpy-sp2c-COF) is reported for rapid fluorescence recognition and enhanced adsorption towards divalent heavy metal ions. The vinylene-linkage lattice shows strong luminescence and excellent stability in both strong acidity and basicity. Bpy-sp2c-COF demonstrates not only nanomolar-scale detection of divalent heavy metal ions, but also good adsorption capacity (Hg2+ 718.48, Ni2+ 278.64, Cu2+ 260.11, and Co2+ 126.23 mg/g). Experimental and theoretical studies reveal the intramolecular charge transfer as the fluorescence quenching mechanism. Further simulation results demonstrate the cyano and bipyridine groups on the lattice can act as dual binding sites for divalent heavy metal ions. Experimental results confirmed the adsorption capacity of Bpy-sp2c-COF superior to that of COFs with either cyano groups (Hg2+ 415.34, Ni2+ 165.60, Cu2+ 160.55, and Co2+ 73.14 mg/g), or bipyridine groups (Hg2+ 369.25, Ni2+ 133.41, Cu2+ 133.32, and Co2+ 69.23 mg/g). Besides, robust regeneration of the adsorbent could be achieved over 10 cycles. The fully π-conjugated COF with dual binding sites provides a new approach for designing next-generation sensors and adsorbents with excellent performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call