Abstract
A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H2S and NH3 were 1.6–38.6 mg∙m–3 and 0.1–6.7 mg∙m–3, respectively, while the steady-state outlet concentrations were reduced to 0–2.8 mg∙m–3 for H2S and 0–0.5 mg∙m–3 for NH3. Both H2S and NH3 were eliminated effectively by the integrated-bioreactor. The removal efficiencies of H2S and NH3 differed between the two zones. Four species of microorganisms related to the degradation of H2S and NH3 were isolated. The characteristics and distributions of the microbes in the bioreactor depended on the inlet concentration of substrates and the micro-environmental conditions in the individual zones. Product analysis indicated that most of the H2S was oxidized into sulfate in the immobilized zone but was dissolved into the liquid phase in the suspended zone. A large amount of NH3 was converted into nitrate and nitrite by nitration in the suspended zone, whereas only a small amount of NH3 was transferred to the aqueous phase mainly by absorption or chemical neutralization in the immobilized zone. Different microbial populations dominated the individual zones, and the major biodegradation products varied accordingly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers of Environmental Science & Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.